Embrayage à friction plane multi disque :
Afin d'augmenter le couple transmissible, on peut aussi augmenter le nombre de surfaces en contact, on réalise ainsi un embrayage multidisque.

Unité de bouchonnage de flacons

Le système à étudier fait partie d'une unité de bouchonnage de flacons de parfum. Il permet d'entrainer un tapis roulant qui alimente l'unité en flacons vides.
La poulie 2 reçoit le mouvement de rotation du moteur par l'intermédiaire de la courroie 1 ce mouvement est transmit à l’arbre 4 par un embrayage commandé par l’électro-aimant 19.

1- En se référant au dessin d’ensemble (page suivante), indiquer ci-dessous la solution technologique assurant les fonctions techniques suivantes:
UNITÉ DE BOUCHONNAGE DE FLACONS DE PARFUM
2- Sur le tableau ci-dessous : **encercler** les pièces qui sont animées d'un mouvement de rotation en cas d'embrayage : Nota : B.E : Bague Extérieur ; B.I : Bague Intérieur

<table>
<thead>
<tr>
<th>Repère</th>
<th>Nom</th>
<th>Fonction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15+22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28+29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3- **Donner** le nom et la fonction des pièces dans le dessin d’ensemble :

<table>
<thead>
<tr>
<th>Repère</th>
<th>Nom</th>
<th>Fonction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4- **Compléter** le tableau des liaisons des organes du mécanisme :

<table>
<thead>
<tr>
<th>Liaison entre</th>
<th>Nom de la liaison</th>
<th>Symbole en deux vue</th>
<th>Degrés de liberté</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rx</td>
</tr>
<tr>
<td>10 / 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 / 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 / 25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 / 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 / 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 / 25+18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 / 24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26 / 24 (cas de montage)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5- **Écrire** la relation entre la translation et la rotation dans une liaison hélïcoïdale.
6- **En cercler** les caractères de la liaison entre 21 et 11 (cas de freinage) :

<table>
<thead>
<tr>
<th>caractères</th>
<th>complète</th>
<th>r : rigide</th>
<th>dé : démontable</th>
<th>a : par adhérence</th>
<th>di : directe</th>
</tr>
</thead>
<tbody>
<tr>
<td>c : partielle</td>
<td>r : élastique</td>
<td>dé : indémontable</td>
<td>a : par obstacle</td>
<td>di : indirecte</td>
<td></td>
</tr>
</tbody>
</table>

7- **Compléter** le schéma cinématique du système ci-dessous :

![Diagramme](image)

8- **Donner** le nom complet et la fonction de cet embrayage :

Sachant que :
- L’effort d’attraction de l’électroaimant est \|\vec{F_a}\| = 650 N
- L’effort presseur du ressort est \|\vec{F_p}\| = 150 N
- Le coefficient de frottement est \(f = 0,6\)
- La surface de friction de l’embrayage a pour rayons \(R_e = 210\) ; \(r_e = 140\)
- La surface de friction du freinage a pour rayons \(R_f = 210\) ; \(r_f = 131\)

9- **Indiquer** sur le dessin d’ensemble les rayons \((R_e \text{ et } r_e)\) de la surface de friction de l’embrayage.

10- **Calculer** le couple à transmettre par cet embrayage :

11- **En déduire** le couple sur la poulie 2.

12- **Que proposer vous** si en désirè doublèr la valeur du couple à transmettre ?

13- **Indiquer** sur le dessin d’ensemble les rayons \((R_f \text{ et } r_f)\) de la surface de friction du freinage.

14- **Calculer** le couple de freinage :
1- En se référant au dessin d’ensemble (page suivante), indiquer ci-dessous la solution technologique assurant les fonctions techniques suivantes:

<table>
<thead>
<tr>
<th>Repère</th>
<th>Nom</th>
<th>Fonction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+2</td>
<td>Poulie -courroie</td>
<td>Transmettre la puissance entre 2 arbres parallèles éloignés par adhérence</td>
</tr>
<tr>
<td>3</td>
<td>Roulement à billes</td>
<td>Faciliter le guidage en rotation de 2/4</td>
</tr>
<tr>
<td>5</td>
<td>Circlips de l’arbre</td>
<td>Bloquer la translation de BI3 vers la droite</td>
</tr>
<tr>
<td>6</td>
<td>Couvercle</td>
<td>Protéger le mécanisme contre la pénétration des impuretés</td>
</tr>
<tr>
<td>7</td>
<td>Entretise</td>
<td>Éliminer la translation de BE3 vers la droite et vers la gauche</td>
</tr>
<tr>
<td>9</td>
<td>Vis CHc</td>
<td>Réaliser l’assemblage de 10/2</td>
</tr>
<tr>
<td>14</td>
<td>Bague entretoise</td>
<td>Arrêt en translation de BI3 vers la gauche</td>
</tr>
<tr>
<td>15+22</td>
<td>Train d’engrenage</td>
<td>Transmettre la puissance entre 2 arbres parallèles rapprochés par obstacle</td>
</tr>
<tr>
<td>16</td>
<td>Clavette parallèle</td>
<td>Éliminer la rotation de 15/4</td>
</tr>
<tr>
<td>17</td>
<td>Écrou à encoche</td>
<td>Arrêt en translation de BI3 vers la gauche</td>
</tr>
<tr>
<td>20</td>
<td>Ressort</td>
<td>Ramener le plateau 21 à sa position initiale (Position freinée) (Créer l’effort presseur de freinage)</td>
</tr>
<tr>
<td>23</td>
<td>Coussinet épaulé</td>
<td>Faciliter le guidage en rotation de 24/(18+25) en diminuant le coefficient de frottement.</td>
</tr>
<tr>
<td>28+29</td>
<td>Pignon chaîne</td>
<td>Transmettre la puissance entre 2 arbres parallèles éloignés par obstacle</td>
</tr>
<tr>
<td>30</td>
<td>Garniture (ferodo)</td>
<td>Augmenter le coefficient d’adhérence pour l’embrayage</td>
</tr>
<tr>
<td>31</td>
<td>Garniture (ferodo)</td>
<td>Augmenter le coefficient d’adhérence pour le frein</td>
</tr>
</tbody>
</table>

2- Sur le tableau ci-dessous; encercer les pièces qui sont animées d’un mouvement de rotation en cas d’embrayage : Nota : B.E : Bague Extérieur ; B.I : Bague Intérieur

<table>
<thead>
<tr>
<th>Repère</th>
<th>Nom</th>
<th>Fonction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3- Donner Le nom et la fonction des pièces dans le dessin d’ensemble :
4- Compléter le tableau des liaisons des organes du mécanisme :

<table>
<thead>
<tr>
<th>Liaison entre</th>
<th>Nom de la liaison</th>
<th>Symbole en deux vue</th>
<th>Degrés de liberté</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rx</td>
</tr>
<tr>
<td>10 / 2</td>
<td>Encastrement</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>2 / 4</td>
<td>Pivot</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>4 / 25</td>
<td>Pivot</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>15 / 4</td>
<td>Encastrement</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>21 / 4</td>
<td>Glissière</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>24 / 25+18</td>
<td>Pivot</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>22 / 24</td>
<td>Encastrement</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>26 / 24 (cas de montage)</td>
<td>Hélicoïdale</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

5- Ecrire la relation entre la translation et la rotation dans une liaison hélicoïdale.

\[1 \text{ tr} = \frac{2\pi}{\text{R}} \times \frac{1 \text{ pas}}{\text{T}} \]

\[T = R \times \frac{\text{pas}}{2\pi} \]

6- En cercler les caractères de la liaison entre 21 et 11 (cas de freinage) :

<table>
<thead>
<tr>
<th>c : complète</th>
<th>r : rigide</th>
<th>dé : démontable</th>
<th>a : par adhérence</th>
<th>di : directe</th>
</tr>
</thead>
<tbody>
<tr>
<td>c : partielle</td>
<td>r : élastique</td>
<td>dé : indémontable</td>
<td>a : par obstacle</td>
<td>di : indirecte</td>
</tr>
</tbody>
</table>

7- Compléter le schéma cinématique du système ci-dessous :

[Diagramme de mécanisme]
8- **Donner** le nom complet et la fonction de cet embrayage :

Embrayage progressif à surface plane simple à commande électromagnétique ;
Permet d’effectuer ou de supprimer à volonté la liaison entre deux arbres en prolongement.

Sachant que :
- L’effort d’attraction de l’électroaimant est \(F_a = 650 \) N
- L’effort presseur du ressort est \(F_p = 150 \) N
- Le coefficient de frottement est \(f = 0,6 \)
- La surface de friction de l’embrayage a pour rayons \(R_e = 210 \) ; \(r_e = 140 \)
- La surface de friction du freinage a pour rayons \(R_f = 210 \) ; \(r_f = 131 \)

9- **Indiquer** sur le dessin d’ensemble les rayons \((R_e\ et\ r_e)\) de la surface de friction de l’embrayage.

10- **Calculer** le couple à transmettre par cet embrayage :

\[
C = \left(\| F_a \| - \| F_p \| \right) \cdot f \cdot R_{moy} = \left(\| F_a \| - \| F_p \| \right) \cdot f \cdot \frac{2}{3} \frac{R_e^3 - r_e^3}{R_e^3 - r_e^3}
\]

\[
C = (650 - 150) \cdot 0,6 \cdot \frac{2}{3} \frac{0,210^3 - 0,140^3}{0,210^3 - 0,140^3} = 53,2 \text{Nm}
\]

11- **En déduire** le couple sur la poulie 2.
Le couple sur la poulie 2 égal le couple de l’embrayage
(transmission sans changement du couple)

12- **Que proposer vous** si en désire doubler la valeur du couple à transmettre ?
Doubler la surface de friction tous simplement

13- **Indiquer** sur le dessin d’ensemble les rayons \((R_f\ et\ r_f)\) de la surface de friction du freinage.

14- **Calculer** le couple de freinage :

\[
C_f = \| F_p \| \cdot f \cdot R_{moy} = \| F_p \| \cdot f \cdot \frac{2}{3} \frac{R_f^3 - r_f^3}{R_f^3 - r_f^3}
\]

\[
C_f = 150 \cdot 0,6 \cdot \frac{2}{3} \frac{0,210^3 - 0,131^3}{0,210^3 - 0,131^3} = 15,61 \text{Nm}
\]